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Abstract

The objective of this work is to develop an alternative Inertial Navigation Sys-

tem (INS) aiding source other than the Global Positioning System (GPS) while pre-

serving the autonomy of the integrated navigation system. It is proposed to develop

a modernized method of aerial navigation using driftmeter measurements. Use of an

Electro-Optical (E/O) system (LANTIRN or Sniper) for ground feature tracking by

the pilot, and an independent altitude sensor (baro altimeter or radar altimeter) in

conjunction with the INS, is envisioned. The idea is to use measurements taken by

the pilot using the E/O system to aid an existing INS, thus automating the naviga-

tor’s function. The pilot will track a ground feature with the E/O system, while the

aircraft is on autopilot holding constant airspeed, altitude, and heading during an INS

aiding session. The ground feature measurements from the E/O system and the INS

output will be used to form measurements provided to a linear Kalman Filter (KF)

running on the navigation computer to accomplish the INS aiding action. Aiding the

INS will be periodically repeated as operationally permissible under pilot discretion.

The structured environment: constant speed, constant altitude, and wings level flight

while on autopilot justifies the linearization of the KF kinematic and measurement

equations used during an INS aiding session. Due to justified linearization conditions,

little to no modeling error will be present when implementing a linear Kalman filter.

Therefore, the strength of the INS aiding action will be exclusively determined by

the prevailing degree of observability. It is shown that after one short aiding period

a 60% reduction in position covariance is realized.
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PILOT-ASSISTED INERTIAL NAVIGATION SYSTEM AIDING

USING BEARINGS-ONLY MEASUREMENTS TAKEN OVER TIME

I. Introduction

1.1 Motivation

Since the wide-spread use of the GPS in military applications, alternate sources

of precision navigation were effectively neglected due to the accuracy and technology

development associated with GPS integration. The dependence on GPS was driven

by the precision and reliability observed in multi-faceted military applications. As

the first nation to design, manufacture, and proliferate a Global Navigation Satellite

System (GNSS), we have been afforded unparalleled navigation and timing capabil-

ities never before seen in the world. Satisfying precision navigation requirements for

ground, flight, and sea based missions spawned the integration and improvement of

GPS technology into virtually all applicable military technologies.

The ease associated with GPS receiver integration for precise timing and navi-

gation has become a hidden standard for technology development in military and

civilian applications. Pushing all in on GPS technology for navigation, coupled with

technology development saturation in support of the War on Terror, the United States

military recognizes the need to establish an alternate precision navigation source. The

challenge is evident when comparing navigation accuracy solutions to GPS, along with

a source as environmentally robust as GPS.

With the high volume product use of GPS technology in military applications,

senior leaders identified the need to explore alternative precision navigation technolo-

1



gies other than GPS. Former Secretary of the Air Force General Norton A. Schwartz

advocated for the reduction of dependence in GPS in 2010 at the Fletcher Conference

on National Security Strategy and Policy: “It seems critical, to me, that the Joint

Force should reduce its dependence on GPS-aided precision navigation and timing, al-

lowing it to ultimately become less vulnerable, yet equally precise, and more resilient”

[20]. The active sensor nature of GPS lends itself to challenges including spoofing,

jamming, and coverage outages. Spoofing or jamming of the GPS signal is a feasible

concern adversaries have the ability to exploit. However, the fidelity and robustness

of military GPS does provide degrees of protection against spoofing and jamming

in specific conditions. Aside from hostile navigation interference, receive availability

of the GPS signal is either constrained or not possible when under cover (bridges,

caves, trees, etc.) and in crowded Radio Frequency (RF) reflective environments like

cities or urban environments where multi-path errors are increased. Therefore, much

inspiration has been drawn from biological inspired navigation. Inspired from human

vision, the passive nature of an Electro-Optical (E/O) system is advantageous to

explore as an alternative inertial aiding source. Going back to the classical naviga-

tion equipment, the self contained INS, coupled with biological inspired navigation

has become a growing research field striving for an alternative precision navigation

source independent of GPS [6].

There has been a strong navigation community movement towards vision-aided

navigation with the improvement in sensing capabilities, and decreased size, weight,

power, and cost constrains associated with inertial systems. The vision aided nav-

igation problem begins with the use of a passive E/O (Electro-Optical) sensor to

track features in the scene to aid an inertial system. The elements of these research

efforts strongly hinge on the ability for computer vision algorithms to identify and

track distinct features in the scene. However, there are still a multitude of research
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opportunities on the filtering and modeling aspects of the problem, specifically with

the INS. Success has been made with feature based tracking for inertial system aid-

ing using stochastic projection in a tightly coupled implementation for navigation

[24] where Monte Carlo simulations were run prior to experimental testing with a

binocular vision system aiding a tactical and consumer grade Inertial Measurement

Unit (IMU).

During World War II aircraft like the B-17 and B-24 were equipped with a sighting

device operated by the navigators known as the driftmeter. Sitting in the glazed nose

of the aircraft using the dirftmeter, the navigator was able to calculate the ground

speed and the wind vector. In a time where navigation using dead reckoning or

pilotage were the main options, the driftmeter was a revolutionary navigation device.

Further technical explanation of the driftmeter will be presented in Chapter II.

Inertial systems installed and operating on aircraft are susceptible to an accumu-

lation of errors over time and require an update source for precision navigation. In

the event, GPS is not available to provide inertial system updates, a common prac-

tice is Initial Point (IP) updates. Surveyed landmarks are logged in memory prior to

flight and the pilot must overfly these points, and conduct an absolute inertial system

update. The nature of IP updates can lead to unquantified bias errors varying be-

tween pilots as the IP update is conducted based on a visual flyover. Also, pilots are

constrained to the surveyed landmarks pre-loaded for absolute IP updates. Allowing

the pilot navigation freedom in a setting where GPS is not available and IP updates

are not possible is the goal. Herein lies the motivation for this research effort; can

a pilot track an arbitrary ground feature to gain a relative inertial system update

improving the navigation solution.

Investigating the strength of the aiding action driftmeter operators were able to

provide serves as the starting point for this research. In the process of replicating

3



driftmeter operations, an interesting subject of observability through correlation was

uncovered. Where observability is a deterministic control system concept and corre-

lation is a stochastic modeling concept. Knowing that the system dynamics is the

link between observability and correlation for a linear system, this research pushes to

understand the benefits available from the gained observability.

1.2 Thesis Organization

Here in Chapter I, the introduction, a basic overview of the motivation is presented

as contextual grounds for the reminder of the document. Chapter II covers the

background concepts necessary to understand the research along with the literature

review. In Chapter III, the methodology used to construct simulation and analysis

is outlined. Results and analysis of simulations are covered in Chapter IV. Lastly,

Chapter V draws conclusions and provides insight on future research extensions and

applications.
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II. Mathematical Background

In this chapter, a detailed overview of the mathematics and physics relating to

vision aided inertial navigation will be presented. Understanding or familiarity with

the concepts presented will enable comprehension of the inertial navigation research

covered here within.

2.1 Notation

For convention purposes, the following are a list and explanation of mathematical

notation used in this thesis.

Scalars: upper or lower case italicized letters, (e.g., k or K ).

Vectors: lower case bold letters or symbols, (e.g., a). All vectors referenced will be

column vectors with a(i) being the element in the ith row of the column vector a.

Matrices: upper case letters or symbols in bold font (e.g., X). Xt(i,j) is the scalar

element of the i th row and the j th column of the matrix X and t is the associated

time.

Transpose: transpose of a vector or matrix will be defined with the superscript T

(e.g., aT or XT).

Estimated Variables: estimates of random variables, vectors, or matrices, will be

identified with the hat character (e.g., x̂, â, X̂).

Calculated Variables: variables, vectors, or matrices, computed which contain

errors will be identified with the tilde character (e.g., x̃, ã, X̃)

Measured Variables: variables measured which contain errors will be identified

with the bar character (e.g.,x̄, ā, X̄)

Direction Cosine Matrix (DCM): a transformation from frame a to frame b is

denoted by Cb
a
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Reference Frame: the reference frame a vector is referenced in will be denoted by

a superscript letter in parentheses, describing the reference frame (e.g., a(b) where

vector a is expressed in the b-frame). Reference frame axes will be defined with the

axis as a lower case letter with the reference frame annotated as a subscript (e.g., xb

defining the body frame’s x axis)

Relative Motion: relative motion between two different frames will be denoted by

the subscripts of both reference frames, read from right to left (e.g., ωab is the rotation

rate of the b-frame relative to the a-frame).

Time: time will be identifiable in vectors or matrices in both continuous and discrete

time. Continuous time will be designated as the first subscript of either a matrix,

vector, or scalar (e.g., a(t),A(t)). Discrete time will be designated with a subscript

of the time index (e.g., xt,Pt).

2.2 Coordinate Reference Frames

Navigation is fundamentally based around the concept of reference frames. Ref-

erence frames define a convention to organize and account for all necessary physical

motion to utilize sensor information. A multitude of reference frames have been

defined over the years. The true inertial frame, Earth-fixed inertial frame, Earth cen-

tered Earth fixed frame, Earth-fixed navigation frame, and the body frame typically

encompass the reference frames used in inertial navigation.

True Inertial Frame.

The true inertial frame is a theoretical non-rotating, non-accelerating reference

frame where Newton’s laws apply. With no predefined origin or orientation, the true

inertial frame is a conceptual reference frame.
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Earth-fixed Inertial Frame.

The Earth-fixed inertial frame originates at the center of the earth with three

non-rotating orthogonal axes in respect to the stars. Axis zi aligns with Earth’s

polar axis and xi aligns with the equator and points to the first star of Aries. The yi

axis is the complement of the xi and zi axes maintaining an orthogonal right hand

rule coordinate frame. Properties of navigation in the Earth-fixed inertial frame are

bound by Sir Issac Newton’s Second Law of Motion F = m · a. Where F is the force

with units N = kg m
s2

, m is the mass of the body, and a is the acceleration of the

body. Therefore, physical laws of motion apply and proves to be necessary in inertial

navigation.

Earth Centered Earth Fixed Frame.

The Earth Centered Earth Fixed frame’s orthogonal axes are fixed based on the

Earth. The ze axis aligns with Earth’s polar axis like the Inertial Frame, and the

xe axis aligns with the equator and 0◦ longitude. Satisfying orthogonal properties

and the right hand rule, the ye axis also passes through the equatorial plane as the

orthogonal complement of the xe and ze axes. The Earth Centered Earth Fixed

(ECEF) frame rotates with respect to the inertial frame about the ze axis at a rate

of ωie = 360◦/23hr 56min.
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Figure 1. Earth Centered Earth Fixed Frame

Earth-Fixed Navigation Frame.

Also known as the local level frame, the Earth-fixed navigation frame designates

an origin at the location of the vehicle with a right hand rule convention with the

zn axis perpendicular to the earths surface. Unlike the inertial frame and the ECEF

frame, the navigation frame changes as vehicle position changes. Navigating with the

navigation reference frame requires knowledge of the Earth rotating. The transport

rate is dependent on the location of the vehicle with respect to the turn rate of the

Earth centered Earth fixed frame (ωen).

Utilized in this research as the Earth-fixed navigation frame, satisfying the right

hand rule, is an East - North - Up (ENU) convention which can be seen in Figure 2.
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Figure 2. East North Up Navigation Reference Frame

Body Frame.

The body frame is utilized for vehicle measurements and is dependent on the

mounting orientation of the sensors on the vehicle. In a strapdown INS system, the

body frame measurements will need to be transformed to the selected navigation

reference frame to for correct incorporation of sensor measurements. A diagram of

the ENU body frame is depicted in Figure 3 where xb is the axis pointing out the

front of the aircraft nose, yb orthogonally points out the left wing, and zb is the up

direction. The origin of this coordinate frame is the location of the sensor cluster.

If the sensor cluster is not co-located at the center of gravity of the aircraft, the

measurement lever arm must be handled.
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Figure 3. Aircraft Body Frame

Camera Frame.

An E/O system is used specifically in this research but essentially, a camera is

considered. The camera frame is located at the optical center of the camera which is

rigidly attached to the body of the aircraft for the purposes of this inertial navigation

research. Therefore, the camera frame is co-located with the body frame and no

DCM or lever arm is necessary when using E/O system measurements. Camera

frame coordinate axes are defined with the zc pointing straight out from the optical

center of camera, and xc pointing up, and yc pointing to the left from the vantage

point of the optical center to the scene. The camera frame is where the projection of

the image in the scene will be resolved for measurements.
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Figure 4. Camera Frame

2.3 Coordinate Transformations

Coordinate transformations allow measurements in one reference frame to be uti-

lized in another reference frame. Vector transformation operations are accomplished

with a matrix capturing the relationship between the two frames of reference. The

process of transforming information between coordinate frames can be accomplished

with a few techniques. Direction Cosine Matrices, Quaternions, and Euler angle ro-

tations all can be implemented to perform a transformation of information between

frames. Each have different implementations along with performance qualities.

Euler Angle Rotations.

Euler angles are obtained as a sequence of three rotations performed in a specific

order on an individual axis. The convention of rotations is (3,2,1) which indicates

the first rotation is about the zb axis, the second rotation about the yb axis and the

last rotation about the xb axis. Individual rotations about each specific orthogonal

axis can be seen in Equation (2.3). Euler angle rotations are a three parameter

transformation with singularities existing at elevation angles ±90◦ [21].
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rotation ψ about zb-axis, C1 =


cosψ − sinψ 0

sinψ cosψ 0

0 0 1



rotation θ about yb-axis, C2 =


cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ



rotation φ about xb-axis, C3 =


1 0 0

0 cosφ − sinφ

0 sinφ cosφ


Combining the individual Euler angle axis rotations in the (3,2,1) convention yields

the DCM Cn
b which rotates the body frame to the navigation frame.

Cn
b = C1 ·C2 ·C3 (1)

Expanding Equation (1) shows the relationship between each body frame and navi-

gation frame axis. The full Cn
b expanded is

Cn
b =


cos θ cosψ − cosφ sinψ + sinφ sin θ cosψ sinφ sinψ + cosφ sin θ cosψ

cos θ sinψ cosφ cosψ + sinφ sin θ sinψ − sinφ cosψ + cosφ sin θ sinψ

− sin θ sinφ cos θ cosφ cos θ


(2)

where each element in the matrix represents the cosine between the specific coordinate

frame axes.

Simplification of Equation (2) due to small Euler angles is validly invoked in this

research due to wings level, heading hold flight, and an East direction of flight. That
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is, (ψ, θ, φ)T = small angles. Combining each Euler angle rotation generates a DCM.

Because of small Euler angle assumptions, the expanded Euler angle rotation matrix,

DCM, necessary to rotate the body frame to the navigation frame becomes Equa-

tion (3).

Cn
b ≈


1 −ψ θ

ψ 1 −φ

−θ φ 1

 (3)

Direction Cosine Matrix.

The Direction Cosine Matrix is a 3 × 3 matrix performing four parameter trans-

formations which eliminate singularity concerns. Each element of the DCM shown

in Equation (4) is equal to the cosine of the angle included between the orthogonal

basis unit vectors of the original reference frame and the target reference frame.

Cn
b =


c11 c12 c13

c21 c22 c23

c31 c32 c33

 (4)

Figure 5 shows the cosine of the angle between two corresponding reference frame

axes which makes up an element of the DCM.
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Figure 5. DCM Element Cosine Between Axes

An example implementation of DCMs can be seen in Equation (5).

a(n) = Cn
b a

(b) (5)

Where vector a(b) resides in the body frame and vector a(n) resides in the navigation

frame. The DCM Cn
b rotates the information in vector a(b) to the navigation reference

frame yielding a(n). An important orthonormal property of DCMs exists:

Cn
bC

n
b
T = Cn

bC
b
n = I (6)

Direction Cosine Matricies will mainly be used becuase of the absence of singularities,

compared to Euler angle rotations.

Quaternions.

Quaternions are also a four parameter coordinate transformation like a DCM

transformation, containing no singularities. The quaternion q is a quadruple, shown

in Equation (7) where the four components are referred to as Euler’s symmetric

parameters which are constrained via Equation (8).
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q =



q1

q2

q3

q4


(7)

q2
1 + q2

2 + q2
3 + q2

4 = 1 (8)

The relationship between coordinate frames is characterized based on a single

rotation about a vector φ where α, β, γ are the angles between the reference axes and

the axis of rotation φ [21]. A quaternion rotation vector is expressed by one real value

and three imaginary values to perform the transformation.



q1

q2

q3

q4


=



cos φ
2

sin φ
2

cosα

sin φ
2

cos β

sin φ
2

cos γ


(9)

2.4 Inertial Navigation

Inertial navigation systems operate within the laws of classical physical mechanics

mathematically describing motion. Given technology has enabled the measurement

of the normal force produced from a body’s acceleration force, mathematical integra-

tion yields a calculation of changes in velocity and position over the measurement

frequency of the sensor. A three-axis strapdown inertial navigation system will con-

tain a minimum of three orthogonally mounted accelerometers measuring specific

force, and three orthogonally mounted gyroscopes measuring angular rate. An im-

portant concept in inertial navigation is resolving the sensor measurements in the

navigation frame of reference, referred to as mechanization.

15



The self contained nature of an inertial navigation system increases the degree of

robustness to outside interference, compared to other navigation systems dependent

on transmission of external signals. However, the challenges associated with inertial

navigation systems come in the form of accumulation of errors. Over long flight

intervals without aiding, INS errors can render the INS virtually useless for precision

navigation. The ability to model the errors of the INS become paramount when using

an external sensor, like an E/O system, to aid an INS.

Accelerometers.

Accelerometers measure translational motion with respect to inertial space. In

the past, accelerometers were strictly mechanical devices. Recent rapid development

of Micro-Electrical Mechanical Sensors (MEMS) technology has yet to show similar

accuracy and precision as the mechanical accelerometers for use in navigation quality

inertial systems. But, is certainly a growing field of research and has made significant

developments in the consumer grade inertial. The cost associated with MEMS devices

makes them advantageous in situations where degrees of navigation precision can

be sacrificed, but the majority of applications use MEMS accelerometers and rate

gyroscopes for control system feedback rather than navigation.

Measurements from an accelerometer measure total or specific force which includes

a gravitational component, not just the acceleration of the body. A breakdown of Sir

Issac Newton’s Second Law of Motion in terms of what an accelerometer measures

is shown in Equation (10), where g is the force due to gravity, a is the acceleration

force of the body, and m is the mass of the body.

F = ma

F = m(a+ g)

(10)
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Therefore, the gravitational component must be subtracted out of accelerometer

measurements. Because gravity is not uniform all over the Earth, physical position

must be used to calculate the force of gravity. Gravity models can be used to calculate

the force of gravity at a physical location on Earth [5]. After the gravity is subtracted

out from the specific force, the remaining force less the gravity model errors is the

acceleration of the body.

A simple accelerometer model is shown in Figure 6 where an acceleration along the

sensitive axis will cause the proof mass to move in the opposite direction, measuring

specific force.

Figure 6. Simple Accelerometer Diagram

Gyroscopes.

Navigation gyroscopic sensors are used to measure changes in angular rate in order

to resolve attitude in the navigation reference frame. Gyroscopes are critical to the
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determination of the body to navigation frame coordinate transformation. Figure 7

shows a diagram of a 2-axis gimbaled gyro, which is different than a strapdown system

but conceptually derives the INS error equations the same.

Figure 7. Two-Axis Gyroscope Schematic Diagram

Gyroscope errors come in the form of drift of the spin axis which occurs over

time. Hence long navigation scenarios will experience increased gyro drift and require

correction.

Strapdown Inertial Navigation.

Strapdown Inertial Navigation refers to inertial systems rigidly attached to the

body of the vehicle as compared to a space stabilized system mechanically isolating the

INS from body motion via gimbals. Drivers for strapdown system use mainly include

size, weight, and cost. The complexity of space stabilized systems are directly related

to the size and weight of the system as well as an increase in cost. As mentioned,

mechanization is the process of resolving the navigation state information in the

navigation frame of reference. Information about the navigation frame of reference
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and how it changes over time must be known. For example, the Earths rotation

must be taken into account when mechanizing from the body frame to the navigation

frame.

INS Error Sources.

The INS inertial instrument cluster made up accelerometers and gyroscopes are

susceptible to errors which can be calculated and modeled to enhance performance of

the INS navigation solution. Errors will be presented with respect to each sensor, a

section for accelerometers and a section for gyroscopes. Although some of the error

sources may be modeled similarly, there is a distinct difference in magnitude for the

errors in the accelerometers and gyroscopes.

Accelerometer Errors.

Accelerometer error sources covered in this section, specifically apply to the strap-

down INS models as there are many different types of accelerometers which have

specific errors of their own [21] [23].

• Bias - An error source displacing the measurement with a fixed value or slow

varying additive error. Bias errors can be determine with inspection of the

output with zero acceleration input on the sensitive axis.

• Scale Factor - Errors in the conversion from output signal measurements to

input acceleration by a scalar quantity. Where the scale factor must be applied

to the output signal measurement to determine the input acceleration of the

body.

• Sensor Misalignment - Sensor misalignment encompasses the manufacturing

and installation of the accelerometer sensors. The assumption is the sensors are
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all mounted perfectly orthogonal which is physically not practical, leading to

sensitive axis measurement errors.

• Vibration - External motion vibrations can cause an additional bias error

correlated with the sensor vibration environment.

• Measurement Noise - Originating from the components used in manufac-

turing of the sensor, measurement noise encompasses electrical noise, thermal

noise, and any other device level noise sources associated with defining the noise

level under which a signal cannot be detected.

• Gravity Model - Accelerometers measure specific force containing the local

gravity component, which must be subtracted out to obtain the acceleration of

the body. Local gravity models are calculated based on position. Position is

calculated via integration of accelerometer outputs which has error components.

Using a position solution corrupted with errors to subtract the acceleration due

to gravity from the accelerometer output is the source of the gravity model

error.

Gyroscope Errors.

Gyroscope error sources covered in this section limit the accuracy of the Gyro-

scope’s measurement of angular rate. Similar to the accelerometer error sources,

techniques for modeling some of the error sources does exist [21] [23].

• Fixed Bias (g-independent) - An error source observed at the sensor output

when no input angular rotation. This bias is typically a random constant bias

or contains slow varying additive error.

• Acceleration Dependent Bias (g-dependent) - Proportional to the accel-

eration force acting on the sensor which impacts not only the sensitive axis of
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the sensor but orthogonal axes as well. Orthogonal axes are impacted because

of the mass unbalance caused by the acceleration force.

• Anisoelastic Bias - Errors associated with acceleration forces present along

orthogonal pairs of axes with respect to the sensative axis.

• Scale Factor - Errors in the conversion from output signal measurements to

input angular rates by way of a scale factor or proportional quantity. The input

angular rate is the desired measurement quantity.

• Sensor Misalignment - Sensor misalignment refers to the mechanincal man-

ufacturing and installation of the gyroscopes. It is assumed the gyroscopes are

mounted in an orthogonal orientation which in physical implementation is not

true leading to sensitive axis measurement errors.

• Measurement Noise - Originating from the components used in manufac-

turing of the sensor, measurement noise encompasses electrical noise, thermal

noise, and any other noise sources associated with defining the noise level under

which a signal cannot be detected.

INS Error Equations.

The dominate INS error sources, described in Section 2.4, drive the direct-state

dynamics model at frequencies dependent on relative motion [3]. Therefore, an error

model can be applied, encapsulating the INS error which removes the high frequency

components of direct-state modeling. The INS error equations are developed to model

the errors in Position Velocity Attitude (PVA).

Attitude errors are characterized as the angular error seen in each axis of the

navigation frame. The attitude error equation yields a differential equation express-

ing the change in attitude errors over time [21]. Equation (11) shows the attitude
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error dependency on the gyroscope biases δω
(b)
ib , and the movement of the navigation

reference frame in inertial space.

δψ̇ ≈ −ω(n)
in ×ψ + δω

(n)
in −Cn

b δω
(b)
ib (11)

Velocity error equation dynamics are expressed as Equation (12). Where the

Coriolis effect comes into play due to movement in a rotating frame, Earth. Error in

the gravity model, δg accounts for the use of the calculated position for the gravity

model. Errors in the accelerometer biases, δf (b) are rotated from the body frame to

the navigation frame using Cn
b . The skew symmetric form of the forces observed by

the accelerometers is [f (n)×] which is multiplied by the error in angles ψ.

δv̇(n) = [f (n)×]ψ + Cn
b δf

(b) − (2ω
(n)
ie + ω(n)

en )× δv

− (2δω
(n)
ie + δω(n)

en )× v − δg
(12)

The rate of change in position error δṗ(n) is defined as the error in velocity δv(n)

δṗ(n) = δv(n) (13)

Use of the full INS error model can bring about numerical issues and induce more

error into the system due to modeling error. Hence, simplification of the INS error

model becomes advantageous and has been done while performing research and in

industry [17][15][18][22][13].

2.5 Driftmeter

Dating back to World War II bomb targeting, navigators on aircraft like the B-

17 and B-24 operated a navigation device known as the driftmeter. At the time,

the driftmeter was a measurement of wind drift that allowed the pilot to adjust
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trajectories to remain on course while also allowing the navigator to calculate the

ground speed for dead reckoning navigation. The use of a drift meter, also known as

a drift indicator or drift sight was the only navigation information tool outside of radar

ranges from beacons, which were not available in hostile environments. Navigators

would sit in the glazed nose of the aircraft and use an to optical sighting device to

track arbitrary ground features whenever necessary, like in Figure 8.

Figure 8. Navigator Locating Ground Feaures with Driftmeter

Many models of the driftmeter were designed and installed for operations on the

B-17 and B-24. Figure 9 shows a typical driftmeter. Where the major components

are the eyepiece the navigator would look through, the line of sight handle for ground

feature tracking along the longitudinal reticle lines, and reading of the drift scale

indicating the drift angle.
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Figure 9. Typical Driftmeter [4]

The driftmeter was made up of a telescoping optical sight attached to a compass

scale. On the reticle of the eyepiece, multiple grid lines were etched to aid the naviga-

tor in capturing driftmeter measurements. Two or three speed lines were horizontally

spaced a known distance. The speed lines along with a timing device were used for

speed measurements, providing a ground speed measurement. Tracking a stationary

ground feature along the longitudinal grid lines yielded the drift angle due to wind as

the navigator rotated the optical sight and observed the compass scale. For example,

the aircraft flying a true heading of 100◦ and the navigator tracks a feature by turning

the sighting device to the left 20◦ indicating the aircraft is drifting 20◦ to the left with

a ground track of 80◦. Figure 10 is a visualization of what the navigator would see

looking through the eyepiece. By convention, the angle δ is the drift angle rather

than the correction angle[4].
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Figure 10. Wind Drift Concept

2.6 Modeling

Based off deterministic modeling techniques, stochastic modeling incorporates a

noise component to linear systems in an effort to compensate for deterministic model

short comings. Deterministic modeling does not account for certain noise sources

that can be observed in the real world, which is where stochastic modeling fills the

void. Stochastic models account for mathematical system model imperfections, un-

controllable disturbances impacting the system, and sensor data imperfections [14].

A brief background of deterministic modeling will be presented followed by stochas-

tic modeling which will highlight the additional fidelity associated with stochastic

modeling.
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Deterministic Modeling.

Deterministic system modeling provides the basis for mathematically capturing

the physical aspects of a system. Basic time-domain models of dynamic systems are

done in the state space form. The general linear state space equations are shown

in Equation (14) in a time invariant application but time varying is also acceptable.

In Equation (14), A is the mathematical dynamics model of the system, x(t) is the

state vector, Γ is the input matrix, and u(t) is the input vector. The output of the

system z(t) is formed from mapping and scaling the states by way of the obersvation

matrix H. Output mapping of system inputs are handled by the D matrix which is

typically zero due to disturbances attributing for most inputs.

ẋ(t) = Ax(t) + Γu(t)

z(t) = Hx(t) + Du(t)

(14)

For a linear system modeled derministically, there exists a deterministic solution to

Equation (14) which is defined as Equation (15).

x(t) = eA(t−t0)x(t0) +

∫ t

t0

e−A(t−τ)Γu(τ)dτ (15)

Derivation of the state transition matrix Φ is achieved through an exponential func-

tion of the dynamics matrix in respect to the time step ∆t = t − t0. The state

transition matrix is used to propagate the state vector forward in time based on the

dynamics model. State relationships in the time domain are captured in the Φ matrix

which will be used later to explain obersvability and correlation.

eA(t−t0) = Φ(t− t0) (16)

Observability of a system is defined as the ability to calculate the state based solely

26



on the system output [11]. For a linear time-invariant system expressed in state space

representation, observability can be tested with the row rank of the observability

matrix. The output matrix H provides a mapping of the states to the output while

the dynamics matrix A captures the states inter-relationships. Equation (17) forms

the observability matrix which test for system observability.

O(H,A) =



H

HA

HA2

...

HAn−1


(17)

For a system to be completely observable, the row rank of the observability matrix

must equal the number of states n. Equation (18) shows the requirements for a fully

observable linear time-invariant system.

rank O = n (18)

Deterministic system observability from a theoretic control approach has been in-

vestigated by many research efforts, but [1] provides a full analysis of the observability

concerns with INS navigation. The observability connection between deterministic

system modeling and stochastic system modeling will be explained further in Chap-

ter III.

Stochastic Modeling.

Referring to the beginning of this section (Section 2.6), stochastic modeling in-

creases the fidelity of a model by specifically introducing components accounting for

model imperfections, uncontrollable disturbances, and sensor data imperfections. It
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is important to first define a stochastic process, which is a real valued function a(t, s)

where t is a time set and s is a set of the sample space which outputs a random

variable [14].

The linear system stochastic model addressing the deterministic model gaps is

Equation (19). Similar to the deterministic model, the system shown is time invariant,

but the framework to model a time variant system exists. Adding to the deterministic

model, G is the noise input matrix which maps the noise realization vector w(t) to

the states, and v(t) which is the measurement noise vector. Adapting the system to

account for any dynamics modeling error is accomplished by w(t), while v(t) models

real world sensor errors in an attempt to generate more realistic sensor measurements.

ẋ(t) = Ax(t) + Γu(t) + Gw(t)

z(t) = Hx(t) + v(t)

(19)

Noise sources, are zero mean, white, Gaussian processes. The noise sources are

defined by a process strength or covariance matrix. Process strength Q is used to

define the necessary statistical covariance of the input noise while similarly, R is used

to define the strength of the measurement noise covariance.

E{w(t) ·wT (t+ τ)} = Q(t) · δ(τ) (20)

E{v(t) · vT (t+ τ)} = R(t) · δ(τ) (21)

In stochastic modeling, the states composing the state vector x(t) have an as-

sociated covariance. The covariance defines the uncertainty with the state. An

understanding of uncertainty is critical in navigation. Where position, velocity, or

attitude information may be available, but is not useful without an understanding of
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the uncertainty of the available information. The covariance matrix Pk contains the

independent covariances of each state as well as the cross-covariance which quantifies

the correlation between states. For example, take a state vector in Equation (22)

comprised of random variables (X, Y, ...etc.) and a covariance matrix Equation (23).

x(t) =



X

Y

...

n


1×n

(22)

Pk =



σ2
XX σ2

XY · · · σ2
Xn

σ2
Y X σ2

Y Y σ2
Y n

...
. . .

...

σ2
nX σ2

nY · · · σ2
nn


(23)

Independent covariance values for a random variable are located on the diagonal

in the Pk matrix, representing the uncertainty of the random variable. The cross-

terms in Pk are the cross-covariance between two separate random variables. Cross-

covariance quantifies a correlated relationship between random variables. Where cor-

relation is defined as a measure of the relational strength between two separate ran-

dom variables.

From probability theory and statistics, the state vector variables are modeled as

random variables. The covariance of random variables can be established using the

expected value operator. Equation (24) shows the variance relationship in probability

and statistics used to populate the covariance matrix.

σ2
XY = E[(X − µX)(Y − µY )] (24)

29



Where µ is the mean of the random variable, and X or Y is the random variable.

First Order Gauss Markov Process.

A First Order Gaussian Markov (FOGM) process [14] takes on multiple statistical

properties which are used to model bias behaviors of accelerometers and gyroscopes.

First, a Markov Process is characterized by the Markov Property defined as memo-

ryless. Equation (25) mathematically expresses the Markov property of recursion.

f(xk | xk−1 ... xN) = f(xk | xk−1) ∀k ∈ R, k − 1, ..., N < k ∈ R (25)

A Gaussian Process can be characterized simply with mean and variance of the

process. The Normal or Gaussian Probability Distribution Function (PDF) and

Cumulative Distribution Function (CDF) are well known to be Equation (26).

f(x, µ, σ) =
1

σ
√

2π
e−

(x−µ)2

2σ2

F (x) =
1√
2π

∫ x

−∞
e

−t2
2 dt

(26)

Measurement Models.

Measurement models are used to take physical sensors capable of measuring phys-

ical space to the simulation space by way of mathematical characterization. The

process by which a sensor is modeled mathematically is extensively documented in

[8] and [14] while also being verified in community research.

Specifically in the research presented, two measurement models will be introduced.

A bearing or angle measurement model, and a linear single state model. The angle

measurement model serves as a good background for the measurement model applied

in Chapter III. The linear single state model is used in Chapter III to model a

barometer altitude aiding sensor.
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Angle Measurement Model.

A bearing measurement is defined as the angle between two points within a coordi-

nate frame of reference. Information about the direction vector connecting the points

exists with the absence of range. With knowledge of the position of both points,

trigonometric functions enable the calculation of the angle between the points. To

illustrate the information necessary for the measurement model and the output solu-

tion, an example is presented. Take an aircraft flying in 2-D position space receiving

angle measurements to a beacon, referenced as a target (T) located at ( xTyT ).

Figure 11. General Angle Measurement Model

Equation (27) shows the angle measurement equation which is non-linear and

must be accounted for when used directly in Kalman filtering.

h(x̂)angle = arctan (
yT − y
xT − x

) (27)

Therefore, a Jacobian approximation is used when implementing an Extended

Kalman Filter (EKF) which handles the non-liniearities in the dynamics and mea-

surement model. However, there is still a degree of linearization error associated with

linearizing the measurement model [14]. The Jacobian approximation for the angle
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measurement model presented in Equation (27) is shown in Equation (28).

∂h(x̂)angle
∂x

=
yT − y

(xT − x)2 + (yT − y)2

∂h(x̂)angle
∂y

=
x− xT

(xT − x)2 + (yT − y)2

(28)

Where the partial derivative of the measurement equation is taken with respect to the

state. Other linearizion techniques are possible when manipulating the information

captured from an angular measurement and will be presented in Chapter III.

Geometry Based Bearing Measurements.

Pure bearing measurements provide radial information while the range is unob-

servable. If the range can be constrained with known information, then the bear-

ing measurement becomes a much more information rich aiding source. In the case

where an aircraft is flying and taking bearing measurements to features located on

the Earth’s surface, knowledge of elevation data or even use of a barometric altimeter

could be used to constrain the elevation of the ground feature.

The E/O system provides a measurement of the ground feature in the inverted

image plane dl while the focal distance of the camera is known f . Altitude of the

aircraft h is typically known well with a barometric aiding source and the distance

from the aircraft’s ground projection to the ground feature is d. Invoking a similar

triangle relationship, Equation (29) captures the proportional relationship between

what the E/O system measures and the aircraft’s location in (x, z).

dl
f

=
d

h
(29)

Derived in a 3-dimensional case, the aircraft’s true position and the true posi-

tion of the ground feature maintain a relationship through geometry [18]. Equa-

tion (30) shows the geometry relationship between the true aircraft position (x, y, z),
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the true ground feature position (xp, yp, zp), and the measurements from the E/O sys-

tem (xf , yf ). The focal length of the E/O system is f , Cn
b is the DCM transformation

from the body frame to the navigation frame.


xp

yp

zp

 =


x

y

z

+
|RLOS|√

x2
f + y2

f + f 2
Cn
b


xf

yf

−f

 (30)

The similar triangle relationship can be explicitly observed in the |RLOS |√
x2f+y2f+f2

term

where the measurement from the E/O system is used to scale the RLOS from the

aircraft to the ground feature. Independently separating Equation (30) yields three

individual measurement equations:

xp − x =
|RLOS|√

x2
f + x2

f + f 2

(
1 0 0

)
Cn
b

(
xf
yf
−f

)
(31)

yp − y =
|RLOS|√

x2
f + x2

f + f 2

(
0 1 0

)
Cn
b

(
xf
yf
−f

)
(32)

zp − z =
|RLOS|√

x2
f + x2

f + f 2

(
0 0 1

)
Cn
b

(
xf
yf
−f

)
(33)

Assuming knowledge of ground feature elevation information zp, manipulation

through substitution can constrain the RLOS which can be substituted into the re-

maining two equations for the x and y axes. After manipulation of Equation (33),

Equation (34) is the scaled RLOS which can be substituted into Equations (31) and

(32).

|RLOS|√
x2
f + y2

f + f 2
=

zp − z(
0 0 1

)
Cn
b

(
xf
yf
−f

) (34)
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Referencing back to Equations (31) and (32), Equation (34) can be substituted

in yielding Equation (35) which is incorporating the knowledge of ground feature

elevation data.

xp
yp

 =

x
y

+
zp − z(

0 0 1

)
Cn
b

(
xf
yf
−f

)
1 0 0

0 1 0

Cn
b


xf

yf

−f

 (35)

Linear Single State Measurement Model.

Use of a simple linear state model is applicable when modeling relatively linear

measurement sensors containing error sources that can be characterized with biases or

Gaussian white noise. Recall Equation (19) where the measurement model is linearly

formed by mapping the state vector to measurement space plus white Gaussian noise.

In the simple 2-D space position model used in Section 2.6, a barometric sensor in

the 2-D case would be able to measure the Y channel. The measurement model for

the two state system example would be

z(t) = y + vk (36)

where the observation matrix would map the y state to measurement space and add

white Gaussian noise account for sensor errors. This linear measurement model is

useful in applications where deriving a linear model is possible.

2.7 Kalman Filtering

Kalman filtering serves as a bedrock of navigation estimation Bayesian Filtering.

A Kalman filter is an optimal recursive data processing algorithm, specifically the

optimal Minimum Mean Squared Estimator (MMSE)[14]. Implementing a KF begins
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with with initial conditions, dynamics model, measurement model, and characteriza-

tion of noise sources. Two implementations of a KF with respect to inertial navigation

are widely used, direct state (total state space), and indirect state (error state space).

Direct State Kalman Filtering.

Direct state Kalman Filters estimate the actual states such as vehicle position,

velocity, and attitude. The drawbacks of direct state Kalman filtering are the high

sampling rates required due to high frequency dynamics. Therefore, direct state KFs

are not typically used in real-time navigation applications. Direct mechanization is

typically restricted to alignment, calibrations, and bias determination in a testing

environment [14].

Figure 12. Direct State Inertial Navigation Kalman Filter Block Diagram

Indirect State Kalman Filtering.

Indirect state Kalman Filters estimate the errors in a particular information source

compared to an external source. In the case of inertial navigation research, the indi-

rect state Kalman filter will estimate the error in the INS using the difference between

the INS output and the external sensor. In the case of vision aided navigation, the ex-

ternal sensor is an optical measurement device providing information to the Kalman
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filter via images. Tracking of features over time and their movement in the image

plane, with the assumption the ground features are stationary, generates useful infor-

mation the Kalman filter can use to update the state vector. High frequency dynamics

are captured in the INS sampling due to the robustness of the error model while the

system error propagation is dominated by the low frequency error propagation model.

Figure 13 shows an indirect state Kalman filter with a feedforward implementa-

tion. The feedforward is executed by taking the output of the Kalman filter error

estimates and subtracting the error estimate from the INS solution. In this system

model, the INS is completely running free without input from outside correction

sources. Strictly the output of the INS is corrected rather than a resetting or direct

correction to the inertial system which has pros and cons. The benefit lies in the self

contained nature of the INS which will still be able to operate during measurement

outages and filter unreliabilities. However, if measurements from the external source

become unavailable, the navigation solution will revert to the free running INS errors

as if no aiding existed from the external source.

Figure 13. Indirect State Feedforward Inertial Navigation Kalman Filter Block Dia-
gram

An indirect state feedback filter is shown in Figure 14. Compared to the feedfor-

ward indirect state Kalman filter, the feedback filter provides direct correction to the

inertial system. This method of filtering maximizes the use of the error estimation
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but also presents system level concerns. As the inertial system has become dependent

on the Kalman filter and the measurements from the external sensor. Erroneous mea-

surements from the external sensor have the potential to corrupt the INS without the

ability to revert back to the self contained INS like the feedforward implementation.

Figure 14. Indirect State Feedback Inertial Navigation Kalman Filter Block Diagram

Kalman Filter Equations.

The Kalman filter, introduced by Rudlof E. Kálmán in a paper titled ”A New Ap-

proach to Linear Filtering and Prediction Problems” initiated the connection between

the state estimate conditioned on previous measurements. A state-space system for-

mulation is used with a dynamics model, control inputs, and measurement model.

As a recursive algorithm, the Kalman filter uses information from the previous time

iteration to calculate the current time iteration state vector and covariance matrix.

Optimal in the MMSE sense, an estimate of the state vector conditioned on all mea-

surements available is realized; shown in Equation (37).

x̂k = E[xk | Zk] (37)

Operation of the Kalman filter is in discrete time, but at each discrete time step

there exists two instances of the KF estimate x̂k and the covariance matrix Pk that

approach the discrete time step from opposite sides. The two instances of the estimate
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and covariance stem from the presence of an update at time k. An estimate with an

update x̂+
k will be moved forward to the next time step through propagation yielding

x̂−k+1. Upon update, at the same time step, the KF estimate becomes x̂+
k+1.

Figure 15. Kalman Filter Time Defined

The Kalman filter can be implemented as an online estimation algorithm due to

the recursive nature of the bayesian estimation filter. Figure 16 shows the recursive

nature of the Kalman filter and the discrete-time estimation process.

Figure 16. Indirect State Feedback Inertial Navigation Kalman Filter Block
Diagram[14]
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Propagate.

Time propagation in the Kalman filter projects the estimate of the states based

on the dynamics model defined forward in time. Where the time step is defined

by the (t − t0) used to generate the discrete time state transition matrix Φd. In

vision aided-INS navigation research, the additive noise sources are the drift and bias

associated with the sensors measuring specific force and angular rate. Propagation

of the state vector is accomplished with multiplication of the state transition matrix,

calculated from the dynamics model, with the previous state vector estimate. The

covariance matrix is also propagated forward in time with the state transition matrix

along with additive discrete input noise. Kalman filter propagation equaitons are

shown in Equation (38). Where x̂−k is the state estimate before update, denoted with

the superscript “-” accent.

x̂−k+1 = Φdx̂
+
k

P−k+1 = ΦdP
+
k ΦT

d + Qd

(38)

Observation Matrix.

The observation matrix Hk+1, similar to the deterministic system output matrix,

maps the states to measurement space. Modeling the KF measurement z̄k+1, the

observation matrix is multiplied by the states and the measurement noise vk+1 is

added to the resultant. Equation (39) shows the modeling of KF measurements where

Hk+1 is the measurement model, or matrix for a linear case, and vk+1 is the noise

associated with the external sensor providing update information to the Kalman filter.

Camera noise sources will be discussed further in the digital imaging Section 2.8.

z̄k+1 = Hk+1x̂k+1 + vk+1 (39)
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Update.

State estimate updating in a Kalman filter requires a measurement z̄k+1 to be

available for the current time step, referencing Equation (37). If a measurement is not

available, no update step is executed and the Kalman filter will continue propagating

the estimate to the next time step. When a measurement is available, information

from an external sensor will be used to update the current estimates.

x̂+
k+1 = x̂−k+1 + Kk+1(z̄k+1 −Hk+1x̂

−
k+1)

P+
k+1 = (I−Kk+1Hk+1)P−k+1

(40)

Minimization of the mean-squared estimation error is specifically accomplished

with the Kalman gain term Kk+1 [8]. The Kalman gain is a weighting term that

scales the residual z̄k+1−Hk+1x
−
k+1 based on the covariance matrix, the measurement

model, and the measurement noise. Filter performance can be specifically tracked

with the residual.

Kk+1 = P−k+1H
T
k+1(Hk+1P

−
k+1H

T
k+1 + R)−1 (41)

Residual.

An understanding of filter performance is a vital metric when optimizing a filter for

a specific application. Performance of the filter is accomplished with comparing the

filter’s estimate of the measurement versus the measurements provided by the external

source. The comparison of the filter estimate and the external source measurement

is know as the residual. Equation (42) shows the measurement residual and residual

covariance which are a performance metrics showing how the filter can estimate the

measurements from the external source.
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rk+1 = z̄k+1 −Hk+1x̂
−
k+1

Sk+1 = Hk+1Pk+1H
T
k+1 + R

(42)

2.8 Digital Imaging

A digital imaging system, specifically a camera, takes in light from a scene through

optics which are detected, amplified, and digitized into a digital output. The use of a

digital imaging system for inertial system aiding is done by the E/O system. Camera

models, noise sources, and image registration topics relevant to this research will be

explained in this section.

Camera Models.

An illustration of an image system model is shown in Figure 17. A scene is

created from the reflection of light off objects in the world. The scene is captured

as the reflected light enters the optics of the imaging device. Optics change the

direction of the light via a convex lens to focus the light to the optical center of the

camera and project the inverse scene onto the detector. Variations in thickness and

shape of the optics will change the parameters of how the scene is projected onto

the detector. When light hits the detector, photons are converted to charges, and

transferred by rows in a raster fashion. The voltage signal is then amplified prior to

digitization yielding a digital output of the scene observed. Analysis of the digital

output from the imaging system enables the feature tracking done in image aided

inertial navigation.
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Figure 17. Image System Model[23]

Pinhole Camera Model.

The pinhole camera model in Figure 18 is a theoretical concept assuming the thin

lens aperture approaches zero. As the thin lens aperture approaches zero, light from

the scene will be focused to pass through the aperture at the exact same intersection

point. When the scene is projected onto the image frame in the pinhole model,

the scene is actually inverted. Projecting the inversion of the image frame yields a

projection of the scene in front of the aperture the length of the focal distance.

Figure 18. Pinhole Camera Model
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Camera Noise Model.

Multiple sources of noise are present in Charge Coupled Device (CCD) camera

images, which are used on targeting pods. CCD noise sources include the conversion

of optical photons to electrical signal charges and the probabilistic measurement error

due to sampling. Noise associated with the external sensor providing update infor-

mation to the Kalman filter is critical. The associated variance of the measurements

brought into the filter must be valid. For example, if the measurements brought into

the Kalman filter have an incorrectly associated variance that is smaller than the true

value, the Kalman filter will incorrectly trust the measurements when updating the

filter estimate.

Image Registration.

Although image registration will not be implemented in this research, computer

vision is a vital component to image-aided navigation. Image registration brings

about issues like camera calibration, feature-point matching techniques, and compu-

tational burdens. Camera calibrations are used to capture the parameters describing

the mapping of 3-dimensional scene space to the 2-dimensional image plane space.

Theoretical simulations can be performed with the pin hole camera model, but in

experimental testing the distortion caused by imperfections in the camera lens must

be modeled and accounted for when using feature-point matching for navigation. A

closed-form solution to modeling radial distortion [25] was developed by Zhang which

has since been extended and improved upon for use in camera calibration toolboxes.

A tutorial on Visual Odometry, specifically Part II: Matching, Robustness, Op-

timization, and Applications dives deep into explaining the current applications of

Visual Odometry and the techniques used to provide relative position error ranging

from 0.1 to 2% [19]. Fundamentally, two approaches exist to track features. One,
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identifying features in one image and subsequently tracking those same features’ prop-

erties throughout future images. Two, independently detecting features in images and

matching the features based on similarity characteristics. Frandorfer and Scaramuzza

present a review of the main feature-point techniques used in Visual Odometry, includ-

ing popular blob detectors Scale Invariant Feature Transformation (SIFT), Speeded

Up Robust Transformation (SURF), and Center Surround Extremas (CENSURE).

2.9 Related Research

There is no shortage of research on aiding an INS. With the emergence of GPS,

the accuracy and precision provided ideal aiding action to an INS for navigation.

However, the reliability of GPS in specific operating environments has ignited the

research on passive sensors to aid an INS. Specifically, at the Air Force Institute

of Technology (AFIT) Autonomy and Navigation Technology (ANT) Center, vision-

aided inertial systems are a strong research thrust. This section does not by any

means represent an exhaustive representation of the communities research but does

highlight the research used to motivate and guide the work presented.

Inertial Navigation System Aiding Using Vision.

James Quarmyne investigated a scripted navigation scenario problem similar to

the research presented, where two ground features were placed in the field of view of

the optical sensor used to aid the INS. The Simultaneous Localization and Mapping

(SLAM) approach was used to constrain the growth of the INS errors over time.

Augmenting the state vector with the geolocated position of the ground features,

along with the covariances, for the duration of the flight significantly reduces the INS

error growth [17].
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Fusion of Low-Cost Imaging and Inertial Sensors for Navigation.

Mike Veth presented a fusion of low cost imaging and inertial sensor integration

for navigation. Utilizing a tightly coupled system structure at the measurement level,

benefitting from the reliability of the inertial system over short time periods and the

duration reliability of the imaging sensor measurements. Monte Carlo analysis was

done to simulate the indoor profile where features were randomly generated on walls to

formulate expected performance of the integrated system. Experimental testing in the

hallways of AFIT showed that using the tightly coupled system along with stochastic

feature projection, the navigation solution error was significantly constrained [24].

A Covariance Analysis of Vision-Aided Inertial Navigation: 3-D Case.

Relyea and Pachter investigated the “bootstrapping” method for INS aiding dur-

ing a cross country flight where previously identified ground features do not reappear

in the field of view. The transition from using the known location of ground features

for INS updating to using unknown ground features for INS updating is covered.

Where the system is augmented with the position estimate and covariance associated

with the ground features used for the INS aiding. It was shown that the growth in

the errors are still unbounded but the rate of growth was significantly reduced. The

volume of position uncertainty was defined for an unaided INS as 0.7071 km3 which

was reduced to 7.4177 ×10−10 with optical tracking aided INS where ground features

were successively tracked throughout the flight [18].

INS Aiding Using Passive Bearings-Only Measurements Of An Un-

known Stationary Ground Object.

Alec Porter constructed three main scenarios where bearings-only measurements

were used to aid a tactical-grade INS with and without prior information, and the
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impact of bearings-only measurements at varying altitudes. The altitude dependency

was evident as the true bearing and INS corrupted bearing cannot be assumed equal

with the presence of significant altitude error. His analysis showed that without prior

knowledge, the positional accuracy of the aircraft is minimally aided. Where the

bearing measurements used are more effective with high Signal-to-Noise Ratio (SNR)

Line of Sight (LOS) measurements in a low Geometric Dilution of Precision (GDOP)

flight scenario with the stationary ground feature.
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III. Methodology

The methodology of the conducted research will be presented as a step by step

process that was initially equation derived and then validated in simulation. First,

an understanding of what World War II navigators were able to provide operating

a driftmeter. Also, defining the robustness associated with the INS error model

due to maneuvering flight dynamics versus a steady-state flight condition will be

evaluated. Then, using current technology to generate “driftmeter” measurements

for INS aiding. A wings level, constant airspeed, heading and altitude hold flight is

simulated to capture what a contemporary driftmeter brings to the table.

When working with non-dimensional variables and parameters, it is important to

calibrate expected performance. The INS error source covered in this research will

strictly be the accelerometer and gyroscope biases. As the dominant source of accu-

mulating INS error, it makes sense to begin with with strictly the bias error sources

to test performance. Rather than a plug and play approach with known specifications

of bias error σ values provided by manufactures, the non-dimensional σ values were

simulated. Calibrated INS bias standard deviations were used to propagate the simu-

lated navigation state INS errors that would be experienced during a flight. Based on

the INS calculated PVA, determined from both the flight trajectory and navigation

state error realization, simulated bearing angle measurements to a stationary ground

feature are calculated. Initialization of the Kalman filter is a very important facet

of the INS aiding technique presented and will be developed further in the section.

At the conclusion of a measurement epoch, the INS is reset by subtracting out the

Kalman filter navigation state error estimate, yielding theoretically a more accurate

INS calculated PVA solution. The purpose of collecting measurements throughout

the epoch and updating at the end is to gauge the strength of INS aiding.

Presentation of the INS aiding methods will be accomplished in two stages. Method
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1 will be referred to as Navigator Replication where the functions of the navigator

will be directly mechanized and assumptions are made about what the navigator had

available. Method 2 is the implementation of the measurement equation derived in

Section 3.4 where contemporary technology is used to automate the functions of the

navigator and the driftmeter.

3.1 Experiment

The experiment of this vision-aided inertial navigation research lies in the estima-

tion of the error in velocity δvx of the INS. Tracking a ground feature throughout a

measurement epoch with an E/O system provides information about the INS error

in velocity. Based on the INS error model dynamics, correlation will be leveraged

by the Kalman filter to effectively reduce the INS error growth for the remainder of

the flight following a measurement epoch. If possible, estimating a portion of the

accelerometer bias, which is a major source of INS error could also positively impact

the resulting INS solution following a measurement epoch [12].

3.2 Navigation Scenario

The navigation scenario section of the methodology will serve as a baseline of

assumptions and conditions set for the vision-aided inertial navigation research sim-

ulations. Although some of the assumptions and simplifications appear to make the

work novel, the goal is to determine the strength of INS aiding possible with a vi-

sion sensor if a ground feature is tracked manually by a pilot. Implementation and

real-world testing is possible with this research as the next logical step to reduce IP

update constraints.
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Non-Dimensionalization.

Variables have been non-dimensionalized via substitution to eliminate variable

units according to Table 1.

Table 1. Navigator Driftmeter Replication Non-Dimensionaliztion

Position Velocity Specific Force Error Angular Rate Error Time

x → x
h

vx → vx
v

δf
(b)
x → δf

(b)
x

g
δω

(b)
x → h δω

(b)
x

v
t→ t v

h

y → y
h

vy → vy
v

δf
(b)
y → δf

(b)
y

g
δω

(b)
y → h

δω
(b)
y

v
T → T v

h

z → z
h

vz → vz
v

δf
(b)
z → δf

(b)
z

g
δω

(b)
z → h δω

(b)
z

v
∆t = 1

Constant aircraft flight simulation parameters used to non-dimensionalize vari-

ables are listed in Table 2:

Table 2. Steady-State Flight Constants

h 1000 m

g 10m
s2

v 100m
s

Non-dimensionalization of all variables and parameters simplify calculations and pre-

vent errors with units. Acceleration due to gravity is taken to be constant and rounded

to 10 m
s2

. Equation (43) lays out the non-dimensionalization process executed for all

variables in Table 1.

g → h · g
v2

=
1000m · 10m

s2

(100m
s

)2
=

10000m
2

s2

10000m
2

s2

= 1 (43)
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Flight Conditions.

Replication of the navigator’s operation of the driftmeter is done through a sim-

ulated 1 hour flight. During the course of the flight, the INS errors will accumulate

without an aiding source. Halfway through the flight, 30 minutes, a ground feature

will be tracked for the duration of an epoch. The flight is broken up into epochs which

are 10 time steps (seconds) long in duration. Therefore, the entire flight consists of

360 epochs. Throughout the duration of the flight, the aircraft will be in autopilot

mode: winds level, airspeed, altitude, and heading hold. Theoretical wings level flight

conditions indicate no attitude changes in roll and pitch (φ, θ). Due to external forces

like wind, wings level flight assumes small attitude changes in roll and pitch exist to

maintain wings level flight, but are small and cancel out in nature. Airspeed hold

describes a constant velocity flight condition where the aircraft is not accelerating or

decelerating. Maintaining altitude simplifies the the vertical component of the LOS

vector to the tracked ground feature. Heading hold constrains (ψ), maintaining a con-

stant aircraft direction of travel. The scripted steady-state flight dynamics eliminate

analysis ambiguities so the aiding action associated with driftmeter measurements

can be understood.

Measurement Geometry.

Geometry of the navigation scenario and measurement arrangement is visualized

in Figure 19. The projection of the aircraft position is the position of the aircraft

on the surface of the Earth. Denoted with the variable P , the tracked stationary

ground feature’s height is assumed known via elevation data or calculation with the

barometric altimeter. The aircraft body frame (xb, yb, zb) is conveniently in the same

orientation as the navigation reference frame (xn, yn, zn) which is in an East-North-

Up convention. Aircraft direction of travel will be in the East direction, longitudinal
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velocity will be the only dynamics induced into the system. The camera frame of the

E/O system is rigidly attached to the aircraft and co-located with the body frame of

the aircraft.

Figure 19. Navigation Geometry of Measurement Arrangement

Longitudinal travel in the xn axis will cause the stationary ground feature to move

through the inverted image plane only in xf . Where (xf , yf ) are the pixel location

of the ground feature in the inverted image plane. The inverted image plane is non-

dimensionalized with the focal distance, f , and is therefore 1 x 1 non-dimensional.

With the center of the inverted image plane defined as (0,0), a feature entering the

field of view of the E/O system will be at (
xf
yf ) = ( 0.5

0 ). Where the value of a ground

feature entering the E/O system is positive because the image plane is inverted. The

measurement equation will be covered in Section 3.4.

INS Error Model - Dynamics.

Error state dynamics are formed based on the INS error equations developed in

Section 2.4, with simplifications. The errors propagated forward in the time domain

are defined as the true navigation state minus the INS calculated navigation state in

Equation (44) where x is the true PVA navigation state vector and xc is the calculated
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INS navigation solution corrupted with δx errors.

δx = xc − x (44)

The navigation state error vector is defined as

δx =

[
δp(n), δv(n), δψ

]T
(45)

where δp(n) are position errors in the navigation frame, δv(n) are velocity errors in

the navigation frame, and δψ is the angular error vector of the ENU navigation frame

of reference. Accelerometer and gyroscope biases will be brought into the system as

inputs according to

δu =

[
δf

(b)
x , δf

(b)
y , δf

(b)
z , δω

(b)
x , δω

(b)
y , δω

(b)
z

]T
(46)

The continuous time state space stochastic model is expressed in a linear arrange-

ment which is driven by the input vector and white Gaussian noise [14]:

ẋ(t) = Ax(t) + Γu(t) + Gw(t) (47)

The state transition matrix is derived from the continuous time dynamics model

of error propagation. Rather than direct state modeling, error state modeling affords

the ability to capture the impact of high frequency dynamic maneuvers with low

frequency sampling rates. The continuous time model for PVA used in this research

will be developed next.

Attitude errors are characterized as the angular error seen in each axis of the nav-

igation frame. The attitude error development from Section 2.4 yielded a differential

equation expressing the change in attitude errors over time [21]

52



δψ̇ ≈ −ω(n)
in ×Ψ + δω

(n)
in −Cn

b δω
(b)
ib

The flight trajectory defined in Section 3.2 allows simplifications to the attitude error

differential equation. The constant velocity flight path along the xn axis and navi-

gation over a flat and non-rotating Earth eliminates the error in the turn rate of the

navigation frame δω
(n)
in . Therefore, the change in angular error can now be expressed

as

δψ̇ ≈ −Cn
b δω

(b)
ib (48)

For small Euler angles (ψ, θ, φ) and an aligned body to navigation frame, the DCM

performing reference frame transoformations from the body frame to the navigation

frame is

Cn
b (ψ, θ, φ) =


1 −ψ θ

ψ 1 −φ

−θ φ 1

 (49)

Wings level constant altitude flight conditions dictate the nominal Cn
b = I3 from

which the perturbation of Cn
b can be solved

δCn
b =


0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0

 (50)

The derivative of the body to navigation frame DCM, Cn
b , is dependent on the rate

of body rotation, and the rate of the navigation frame rotation. Due to no body rota-

tions in a wings level flight scenario, the body frame and navigation frame alignment

remains constant. Reducing Equation (51) to the constant DCM in Equation (2)
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Ċn
b = Cn

bΩ
(b)
ib −Ω

(n)
in Cn

b

Ċn
b = 0

(51)

Misalignment angles of a notional platform system which is mechanized to the

navigation frame is expressed as

δΨ = −δCn
bC

b
n (52)

where δΨ is the skew symmetric form of the angular errors vector δψ, ie.,

δΨ = δψ× (53)

Referring to Equation (52), the angular errors can be calculated. Keeping in mind,

the Euler angles of the aircraft are assumed zero in the nominal Cn
b .

δΨ = −


0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0




1 ψ −θ

−ψ 1 φ

θ −φ 1



δΨ = −


δψ · ψ + δθ · θ −δψ − δθ · φ −δψ · φ+ δθ

δψ − δφ · θ δψ · ψ + δφ · φ −δψ · θ − δφ

−δθ − δφ · ψ −δθ · ψ + δφ δθ · θ + δφ · φ


(54)

Substituting the Euler angle values from the nominal Cn
b = I3, the angular errors

matrix δΨ is

δΨ =


0 δψ −δθ

−δψ 0 δφ

δθ −δφ 0

 (55)
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In vector form, the angular errors can be extracted using Equation (53) yielding

Equation (56). Following convention, negative angular errors is not regular practice

and the negative will be relegated to the other multiplicand.

δψ =

[
−δφ −δθ −δψ

]T
(56)

Velocity error equation dynamics are expressed referencing Section 2.4. Over short

flight distances, that is, during an INS aiding session, the velocity error equation

dynamics are simplified to the specific force vector rotated by the error in angles Ψ

plus the effect of the accelerometer biases.

δv̇(n) = [f (n)×]ψ + Cn
b δf

(b) − (2ωnie + ωnen)× δv

− (2δωnie + δωnen)× v − δg

Equation (57) shows the simplified velocity error dynamics implemented in this re-

search with the elimination terms accounting for the rotation of the Earth, and error

in gravity.

δv̇(n) = [f (n)×]ψ + Cn
b δf

(b) (57)

The skew symmetric specific force matrix is derived from the flight conditions in

Section 3.2. Constant altitude, winds level flight along the xn direction generating a

specific force vector with only gravitational components in the zn axis and acceleration

force in the xn. Theoretically, no forces will be observed in the yn axis in the developed

navigation scenario. The specific force vector in Equation (58) is populated according

to the convention of body forces minus the gravitational forces, keeping in mind the

ENU reference frame convention.
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f (n) =


f

(n)
x

f
(n)
y

f
(n)
z

 =


ax

0

0

−


0

0

−g

 =


ax

0

g

 (58)

Therefore, the skew symmetric matrix form of the specific force vector becomes

f (n)× = F(n) =


0 −g 0

g 0 −ax

0 ax 0

 (59)

The rate of change in position error δṗ(n) is defined as the error in velocity δv(n).

δṗ(n) = δv(n) (60)

Referencing Equation (47), the navigation state error dynamics matrix A and the

input matrix Γ in Equation (61) are formed from the INS error equations developed

in this section.

δẋ =


03 I3 03

03 03 −F(n)

03 03 03

 δx +


03 03

Cn
b 03

03 Cn
b

 δu (61)

Where F(n) is the skew symmetric specific force matrix from Equation (59) and

Cn
b = I3 as the nominal DCM transformation from the body frame to the navigation

reference frame.

Due to the presence of accelerometer and gyroscope biases, bias error states are

incorporated into the system by way of augmentation. The sensor bias errors are mod-

eled as Gaussian distributed random variables described with mean (µ) and standard

deviation (σ). The accelerometer bias errors δf (b) and the gyroscope bias errors δω(b)
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in the body frame are described as

δf (b) ∼ N(0, σ2
ba)

δω(b) ∼ N(0, σ2
bg)

(62)

The navigation state error vector is augmented with the accelerometer and gyroscope

biases according to

δx =

[
δp(n), δv(n), δψ, δf (b), δω(b)

]T
(63)

as well as the dynamics matrix which becomes a 15× 15 matrix.

A =



03 I3 03 03 03

03 03 −F(n) Cn
b 03

03 03 03 03 Cn
b

03 03 03 03 03

03 03 03 03 03


15×15

(64)

Referring back to the state space stochastic model, Section 2.6, the noise input matrix

G is formed to add noise accordingly. In the case of a constant random bias error,

no input noise in necessary.

G =



03 03

Cn
b 03

03 Cn
b

03 03

03 03


15×6

(65)

Therefore, the state space stochastic model is newly defined accounting for accelerom-

eter and gyroscope biases by way of augmentation. Due to the implementation of
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random constant biases, the inclusion of the noise input matrix and noise strength

matrix is not needed. Modeling of biases as FOGM processes and the addition of INS

drift would require the use of the noise input matrix and noise strength matrix [14].

Incorporation of a barometric altimeter sensor bias is incorporated because of

the sensitivity of the z channel and the standard accompaniment of an altitude aid-

ing sensor with a navigation quality INS. The complete state space system model

implemented in this research is

δẋ =



03 I3 03 03 03 0

03 03 −F(n) Cn
b 03 0

03 03 03 03 −Cn
b 0

03 03 03 03 03 0

03 03 03 03 03 0

0 0 0 0 0 0





δp(n)

δv(n)

δψ

δf (b)

δω(b)

δb
(b)
baro


(66)

The initialized covariance matrix associated with the augmented state model

shown in Equation (67) assumes a perfect initial INS alignment and known infor-

mation from of the INS bias sources from the manufacture specifications.

P0 =



03 03 03 03 03 0

03 03 03 03 03 0

03 03 03 03 03 0

03 03 0 σ2
ba

03 0

03 03 03 03 σ2
bg

0

0 0 0 0 0 σ2
bb


16×16

(67)
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3.3 Method 1: Driftmeter Replication

This section will outline the simulations performed to validate assumptions made

about use of the dritmeter. Capturing the aiding action the driftmeter provided

is simulated using both structured steady-state fight dynamics and flight dynamics

with acceleration inputs in the direction of travel. The measurement model is derived

as linear. Implementation of the KF used to replicate the navigator’s driftmeter

measurements will also be covered.

INS Error Model Robustness.

With a simplified wings level INS error model, it was prudent to test how robust

the INS error model was to dynamic flight conditions rather than just steady-state

flight conditions. Therefore, robustness testing of the INS error model was simulated

to determine how acceleration forces versus constant velocity flight impact INS error

accumulation. The definition of the error state model indicates that acceleration in

the direction of travel will yield minute differences in navigation state error results

but the investigation is warranted.

Input acceleration forces to simulate acceleration or deceleration of the aircraft

during flight in the xn direction changed the state transition matrix Φd from being

constant to becoming time-dependent Φdk+1
. Referencing Equation (58), a sine wave

function was used to generate the acceleration and deceleration forces to drive the

flight dynamics.

f (n) =


f

(n)
x

f
(n)
y

f
(n)
z

 =


ax
g

sinωt

0

0

−


0

0

−g

 =


ax
g

sinωt

0

g

 (68)

The magnitude of the acceleration force input ax is non-dimensionalized with the
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force of gravity g. Acceleration input frequency ω was empirically tested to determine

the the highest degree of INS error model impact as high frequency repeating inputs

appeared to cancel out over the course of flight.

Robustness of the INS error model in the direction of travel will be simulated

through the parameters in Table 3.

Table 3. Steady-State Flight Constants

a
g

ω(rad
s

)

0.2 0.005

0.4 0.05

0.6 0.5

0.8 1

1.0

Measurement Model - Measurement Equation.

Referencing Section 3.2, the measurement model for World War II navigator’s

driftmeter operations will be constructed in this section. The history of the drift-

meter in Section 2.5 outlines the measurements the navigator used to calculate the

ground speed and the wind vector. Essentially, the navigator was able to get a veloc-

ity estimate as the aircraft was on autopilot traveling at constant airspeed. With a

measurement of velocity, the navigator could determine δv. Therefore, the measure-

ment model used to replicate the navigator’s operation of the dirftmeter is a linear

model that taps δvx.

Utilizing the barometric sensor to stabilize the z channel, the barometric altimeter

measurement is constructed via substitution shown in Equation (69). Subtracting the

output of the INS, zc from the output of the barometric sensor, zbaro yields the error
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in the z channel.

z̄ = zc − zbaro

z̄ = (z + δz)− (z + δbbaro)

(69)

Kalman filter measurements are defined as the difference between the INS velocity

output vxc and the driftmeter velocity output vxm ; and the difference between the the

INS altitude output zc and the barometric altimeter sensor output zbaro. Equation (70)

shows the measurement given to the KF.

z̄k+1 =

vxc − vxm
zc − zbaro

 (70)

By substitution, the measurement given to the KF can be expressed in error terms.

The velocity error in the INS is δvx, and the error in the driftmeter measurement is

due to the optical device, δxf . The INS error in altitude is δz and the error in the

barometric altimeter measurement is δbbaro, from Equation (69).

z̄k+1 =

δvx − 2δxf

δz − δbbaro

 (71)

The measurement covariance R, the uncertainty associated with the measure-

ments given to the KF, is derived as Equation (72). Error associated with the track

of the ground feature through the sighting device of the driftmeter is σc. No human

induced timing or feature tracking error is considered.

R =

σ2
baro + 2

∆t2
σ2
c 0

0 σ2
baro

 (72)

The linear measurement matrix for the measurement given to the KF, H, repli-

61



cates the navigator’s driftmeter measurements and the use of a barometric altitude

aiding sensor. Also known as the observation matrix, H is shown in Equation (73).

H =

[
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 −1

]
(73)

Using the measurement model developed in this section, the use of a Kalman filter

can be used to estimate the INS error in velocity and altitude during a measurement

epoch. Navigator’s did not continuously use the driftmeter as a constant measurement

source. Rather, it was used intermittently for course correction while dead reckoning

when operationally available.

Kalman Filter.

Use of the Kalman filter will provide an estimate of the error in velocity and

error in altitude which can be used to correct the INS. In the navigator’s time, error

models currently used as community standards were not utilized in flight. However,

with knowledge of the INS quality, the navigator could calculate an estimate of the

error covariance using flight time. Therefore, a comparison will be drawn between

initializing the Kalman filter with independent covariance terms and zeroing out all

cross-covariance terms versus initialization with the full free INS covariance.

In the scenario when the Kalman filter is initialized with the independent co-

variances and no cross-covariance terms, the covariance matrix P+
0 would be set to

Equation (74). With only knowledge about the individual decoupled performance of

the sensors, a time propagation of the uncertainty is possible.
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P+
0 =



P
+ (free)
k(1,1) 0 0 0 0

0
. . . 0 0 0

0 0
. . . 0 0

0 0 0
. . . 0

0 0 0 0 P
+ (free)
k(16,16)


(74)

Utilizing the cross-covariance terms that are generated because of the state tran-

sition matrix, Φd, allows measurements of a state to affect another correlated state.

In control theory, observability indicates whether a state can be calculated from the

output [11]. State correlation from cross-covariance relationships can result in ob-

servability of states that are not directly incorporated in the measurement model.

Initialization of the Kalman filter with the cross-covariance terms results in correla-

tion of position, velocity, and accelerometer bias states for respective axes. The initial

covariance matrix with correlation is Equation (75).

P+
0 = P

+ (free)
k (75)

The Kalman filter propagate, update, and Kalman gain equations are show in

Equations (76), (77), and (78).

δx̂−k+1 = Φδx̂+
k , δx̂+

0 = 0

P−k+1 = ΦP+
k ΦT + Qd ,P+

0 = Pk (free INS)

(76)

Kk+1 = P−k+1H
T (HP−k+1H

T + R)−1 (77)

δx̂+
k+1 = δx̂−k+1 + Kk+1(z̄k+1 −Hδx̂−k+1)

P+
k+1 = (I−Kk+1H)P−k+1 , k = 0, 1, ..., L− 1

(78)
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At the end of a measurement epoch, the Kalman filter estimate δx̂ will be used

to reset the INS to capture the resultant aiding action native to the inertial system.

The INS will be reset by subtracting the Kalman filter estimate of the navigation

state error and setting the INS error covariance to the Kalman filter covariance.

δxk+1 = δxk+1 − δx̂+
k+1 (79)

P
(ins)
k+1 = P+

k+1 (80)

3.4 Method 2: Contemporary Driftmeter

The contemporary driftmeter is the implementation of the driftmeter measure-

ments the navigator used but accomplished with current technology. Use of a more

realistic measurement model rather than a theoretical observation matrix translates

the information available from an INS and E/O system to measurements that can

be used by the Kalman filter to estimate the navigation state error. There are sim-

ilar elements of the Navigator Replication simulation development that exist in the

Contemporary Dritmeter simulation.

Measurement Model - Measurement Equation.

A measurement epoch is the time the aircraft is in autopilot mode and the station-

ary ground feature is tracked by the pilot while in the E/O system’s field of view. It

is during a measurement epoch, that INS aiding action will take place. At the conclu-

sion of the INS aiding session, the INS will be reset. Figure 20 pictorially shows the

geolocation and then tracking of a ground feature through one measurement epoch.
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Figure 20. Pilot Geolocating and Then Tracking a Ground Feature (P ) Through a
Measurement Epoch

A relationship of similar triangles generated from Section 3.2 is invoked between

the image location in the inverted image plane and ground feature location in the

reference frame. The relationship is dependent on the knowledge of both the E/O

system’s focal length f and ground feature elevation - see Figure 19. The similar

triangle relationship allows the construction of the measurement equation shown in

Equation (81) [18].


xp

yp

zp

 =


x

y

z

+
|RLOS|√

x2
f + y2

f + f 2
Cn
b


xf

yf

−f

 (81)

This nonlinear measurement equation ties together the true navigation state, the
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“known” position of the ground feature, and the true ground feature bearing mea-

surements coming from the E/O system. Equation (81) represents two independent

measurements: with the elevation of the ground feature zp known from terrain data,

the three measurement equations can be reduced to two independent nonlinear mea-

surement equations [16]:

xp
yp

 =

x
y

+
zp − z(

0 0 1

)
Cn
b

(
xf
yf
−f

)
1 0 0

0 1 0

Cn
b


xf

yf

−f

 (82)

Equation (82) represents two nonlinear measurement equations derived from Equa-

tion (81), relating the true aircraft position (x, y, z), true driftmeter measurements

(xf , yf ), and the true ground feature position (xp, yp, zp).

In the derivation of the KF equations it is assumed that the position (xp, yp, zp)

of the ground feature P is known. The latter is the geolocated position of the ground

feature at the beginning of the measurement epoch, which is calculated also using the

two nonlinear Equation (82).

The two nonlinear measurement equations from Equation (82) are linearized and

used to derive the measurement matrix Hk+1 used in the KF. Equation (82) is also

used in the calculation of the measurement that is fed to the KF. The measurement

fed to the KF, z̄k+1, is corrupted with INS and E/O system errors. Specifically, mea-

surements brought into the Kalman Filter are defined as the difference between the

measured position of the ground feature and the “known” position of the geolocated

ground feature. The KF measurements (z̄k+1) are the difference of the geolocated

ground features’ position at the beginning of the measurement epoch and the ground

feature position calculated using subsequent bearing measurements taken throughout

the measurement epoch. This embodies the optical information provided by a drift-
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meter, and is given to the KF as its measurements, z̄k+1, to be fused with the inertial

measurements.

A measurement epoch extends through the discrete time instants k = 1, ..., L. At

time k = 0, before the measurement epoch, the ground feature is geolocated, that

is, its coordinates (xpm , ypm) are calculated according to Equation (83). The true

navigation state of the aircraft on the Right Hand Side (RHS) of Equation (82) is

substituted with the INS output which is corrupted with INS errors. The INS output

is designated with the subscript c. Also, on the RHS of Equation (82), the true image

plane pixel location (
xf
yf ) of the ground feature is substituted with the E/O system

measurement of the ground feature. The E/O system contains measurement errors,

(
δxf
δyf

). Measurements from the E/O system are designated with the m subscript.

xpm
ypm

 =

xc
yc

+
zp − zc(

0 0 1

)
(Cn

b )c

(
xfm
yfm
−f

)
1 0 0

0 1 0

 (Cn
b )c


xfm

yfm

−f

 (83)

The “known” coordinates ( xpmypm ) of the geolocated ground feature are used throughout

the rest of the measurement epoch. The measurement z̄k+1 given to the KF is the

geolocated ground feature throughout the epoch at time k = 1, ..., L generated using

the calculated (xc, yc, zc) from the INS and xfm , yfm provided by the E/O system

minus the position of the geolocated ground feature at time l = 0, computed using

the calculated (xc, yc, zc) also from the INS, and xfm , yfm provided by the E/O system.

Thus, the same measurement model in Equation (83) is used to first geolocate

the ground feature at time k = 0 yielding ( xpmypm ) and then calculate the ground

feature position at time k = 1, 2, ...L throughout the measurement epoch yielding

( xpcypc )k. In summary, calculated values are provided by the INS and are denoted by
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the subscript c, namely (xc, yc, zc) which is the aircraft position containing INS errors

(δp, δv, δΨ). The measurements from the E/O system are (xfm , yfm), corrupted with

Gaussian distributed pixel location errors δxf , δyf . The measurement z̄k+1 given to

the Kalman Filter is displayed in Equation (84).

z̄k+1 ,

xpc
ypc


k

−

xpm
ypm


k=0

, k = 1, ..., L (84)

The rationale for this approach is as follows. For the purpose of deriving the KF,

which operates at time k = 1, 2, ..., L, the position of the ground feature on the Left

Hand Side (LHS) of Equation (82) at time k = 1, 2..., L is taken to be “known”. At

the same time, the position (x, y, z) of the aircraft on the RHS of Equation (82) is

perturbed:

x = xc − δx

y = yc − δy

z = zc − δz

(85)

Following the convention of perturbing the position of the aircraft (x, y, z), the

body to navigation frame DCM can be perturbed according to Equation (86)

I = Cn
b = (Cn

b )c − δCn
b (86)

With all terms on the RHS of the equation perturbed and now expressed in error

quantities, subtraction of the two nonlinear equations made from Equation (82) yields

a linearized measurement equation.
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Linearization of the Measurement Equation.

z̄k+1 =

δx
δy

− 1(
0 0 1

)
(Cn

b )c

(
xfm
yfm
−f

)
1 0 0

0 1 0

 (Cn
b )c


xfm

yfm

−f

 δz

+
zp − zc(

0 0 1

)
(Cn

b )c

(
xfm
yfm
−f

)
1 0 0

0 1 0




0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0



xfm

yfm

−f



− zp − zc

[

(
0 0 1

)
(Cn

b )c

(
xfm
yfm
−f

)
]2

(
0 0 1

)
0 −δψ δθ

δψ 0 −δφ

−δθ δφ 0



xfm

yfm

−f


1 0 0

0 1 0

 (Cn
b )c


xfm

yfm

−f



+
zp − zc(

0 0 1

)
(Cn

b )c

(
xfm
yfm
−f

)
1 0 0

0 1 0

 (Cn
b )c


δxf

δyf

0



− zp − zc

[

(
0 0 1

)
(Cn

b )c

(
xfm
yfm
−f

)
]2

(
0 0 1

)
(Cn

b )c


δxf

δyf

0


1 0 0

0 1 0

 (Cn
b )c


xfm

yfm

−f

 , k = 1, 2, ..., L

(87)

Simplification of terms in Equation (87) yields the linearized measurement model,

that is, the observation matrix Hk+1 in Equation (88). The values contained in the

Hk+1 matrix are the true nominal variables and determined by the autopilots settings.

The time dependent observation matrix at time k, which can be augmented with 03×6

to account for the accelerometers’ and gyros’ biases and augmented with ( 0 0 −1 )T to

account for the barometric altimeter sensor random constant bias is

Hk+1 =


1 0

xf
f

0 0 0 −(zp − z)
xf
f

yf
f

(zp − z)[(
xf
f

)2 + 1] (zp − z)
yf
f

0 0 0 0 0 0 0

0 1
yf
f

0 0 0 −(zp − z)[1 + (
yf
f

)2] (zp − z)
xf
f

yf
f

−(zp − z)
xf
f

0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1


(88)
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The 3rd row in the Hk+1 matrix allows for the inclusion of an independent altitude

measurement, in this case a barometric altimeter sensor is used. The measurement

noise variance R is provided in Equation (89) and is determined by the Gaussian

distributed noise associated with the pixel location of a feature from the scene in a

CCD camera [2]. The covariance matrix of the measurement error needed in the KF

is

R =


σ2
c

f2
(zp − z)2 0 0

0 σ2
c

f2
(zp − z)2 0

0 σbaro

 (89)

where σbaro is the barometric altimeter sensor measurement error standard deviation.

The time dependent Hk+1 matrix and the R matrix define the linear measurement

model relating the E/O system outputs xf and yf to the INS navigation state errors.

Altitude Aiding: Barometric Altimeter Measurement.

Incorporating an altitude aiding sensor is necessary with the use of a navigation

grade inertial system [10]. Typically, the altitude aiding sensor of choice is a baromet-

ric altimeter which preserves the passive nature of the inertial system as opposed to

a radar altimeter. The barometric altimeter will measure the altitude of the aircraft

above a fixed calibrated level which is provided by a ground based system. Because

the barometric pressure of mercury is measured to the hundredth inch, there will be

a bias that exists in the barometric altimeter measurement. Referencing the Hon-

eywell AM-250 [9], with accuracy of ±0.01 inHg, 1Hg at 0◦ ≈ 2.67 m at 0◦. This

research will use a non-dimensionalized barometric altimeter measurement σbaro =

1 m
1000 m

= 0.001.

The barometric altimeter measurement model requires the addition of a measure-
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ment bias. The incorporation of a barometric altimeter bias is accomplished as a con-

stant random Gaussian bias also non-dimensionalized according to σbbaro = 5 m
1000 m

=

0.005. The sensor measurement model is defined as measuring the true altitude with

the inclusion of a barometric altimeter bias.

z̄baro = z + δbbaro (90)

Deriving the altitude update measurement z̄baro that is used by the Kalman filter to

update the navigation state error vector, is consistent with the linearization technique

used to generate the E/O system measurements for the Kalman filter. The error in

altitude when incorporating the barometric altimeter will be the INS δz error from

the zc solution minus the barometric altimeter sensor bias, δbbaro.

zc = z + δz

z̄ = zc − zbaro

z̄ = (z + δz)− (z + δbbaro)

(91)

The constant linear observation matrix H(baro) is

H(baro) =

[
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1

]
(92)

which maps the navigation state error vector to measurement space.

Use of the barometric altimeter measurement model is invoked for all time. As

opposed to the E/O system measurements which are only available when a ground

feature is in the field of view. Therefore, a barometric altimeter sensor measurement

will be used to update the INS at every time step. The INS error in altitude, δz,

will be constrained by the measurement covariance of the barometric altitude sensor.

Correlation will also enable good KF estimates of δv̂z and δf̂
(b)
z which can be used to
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decrease the INS error δvz and δf
(b)
z .

Kalman Filter.

The barometric altimeter measurement model alone will be used for all time with

the exception of the epoch when ground feature measurements are available. Prior

to an INS aiding session with E/O system measurements, the observation matrix in

Equation (92) is linear and time invariant. When E/O system measurements are

used for updating during the epoch, the observation matrix becomes the linear time

variant matrix in Equation (88)

Implementation of the Kalman filter during the measurement epoch will provide

an estimate of the navigation state error δxk+1 and the associated error covariance

Pk+1. The Kalman filter equations used in Section 3.3 are identical except for the

inclusion of a time-dependent observation matrix Hk+1 during the measurement epoch

where a ground feature is measured with the E/O system.

Due to the ground feature tracking throughout the duration of the measurement

epoch, a time-dependent observation matrix must be incorporated into the KF equa-

tions. The navigation state error estimate xk is propagated forward in time according

to Equation (93).

δx̂−k+1 = Φδx̂+
k , δx̂+

0 = 0

P−k+1 = ΦP+
k ΦT + Qd ,P+

0 = Pk (free INS)

(93)

When the measurement epoch begins, k = 0, the ground feature is geolocated and

no bearing measurements are taken for system update. Starting at time k = 1 and

continuing until the end of the measurement epoch k = L, bearing measurements to

the geolocated ground feature are used to update the navigation state error estimate.

The Kalman gain is computed similar to Equation (77), but now calculated with the
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time-dependent observation matrix Hk+1.

Kk+1 = P−k+1H
T
k+1(Hk+1P

−
k+1H

T
k+1 + R)−1 (94)

The Kalman filter estimate and covariance using measurements up to time k + 1

are calculated according to Equation (95), also using the time-dependent observation

matrix Hk+1.

δx̂+
k+1 = δx̂−k+1 + Kk+1(z̄k+1 −Hk+1δx̂

−
k+1)

P+
k+1 = (I−Kk+1Hk+1)P−k+1 , k = 0, 1, ..., L− 1

(95)

At the end of the measurement epoch k = L, the estimate and covariance com-

puted by the Kalman filter will be used to reset the INS, by subtracting the Kalman

filter estimate from the output of the INS like in Equation (79). Keep in mind, the

navigation state error estimates are only subtracted from the navigation state error.

Specifically, the estimate of the barometric sensor bias is not included in the INS

resetting.

δxk+1 = δxk+1 − δx̂+
k+1 (96)

The error covariance capturing how well the filter has estimated the states is car-

ried forward and used to reset the INS error covariance. Resetting the INS error co-

variance is executed with the same procedure done in Section 3.3 with Equation (80).

P
(ins)
k+1 = P+

k+1 (97)
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Navigation State Kalman Filter.

Reducing the number of states in the Kalman filter increases the observability in

the states the KF does estimate. In an attempt to try a new simple technique and

move away from potential over modeling, a navigation state Kalman filter is imple-

mented. The KF state vector will only contain the navigation state error (δp, δv, δψ)

and the barometric altimeter bias (δbbaro). By excluding the accelerometer and gy-

roscope biases from the KF state vector, observability is increased.

Also, fixing the position error when entering an INS aiding session and tracking

the growth in the velocity error throughout the measurement epoch is key. The KF

covariance is initialized according to Equation (98) where the free INS computed

covariance is used for all states except for position. Fixing δp at the beginning of an

INS aiding session allows the KF to estimate the total error in velocity.

P+
0 =



0 0 0 P
+ (free)
k(1,4) P

+ (free)
k(1,5) P

+ (free)
k(1,6) P

+ (free)
k(1,7) P

+ (free)
k(1,8) P

+ (free)
k(1,9) P

+ (free)
k(1,16)

0 0 0 P
+ (free)
k(2,4) P

+ (free)
k(2,5) P

+ (free)
k(2,6) P

+ (free)
k(2,7) P

+ (free)
k(2,8) P

+ (free)
k(2,9) P

+ (free)
k(2,16)

0 0 0 P
+ (free)
k(3,4) P

+ (free)
k(3,5) P

+ (free)
k(3,6) P

+ (free)
k(3,7) P

+ (free)
k(3,8) P

+ (free)
k(3,9) P

+ (free)
k(3,16)

P
+ (free)
k(4,1) P

+ (free)
k(4,2) P

+ (free)
k(4,3) P

+ (free)
k(4,4) P

+ (free)
k(4,5) P

+ (free)
k(4,6) P

+ (free)
k(4,7) P

+ (free)
k(4,8) P

+ (free)
k(4,9) P

+ (free)
k(4,16)

P
+ (free)
k(5,1) P

+ (free)
k(5,2) P

+ (free)
k(5,3) P

+ (free)
k(5,4) P

+ (free)
k(5,5) P

+ (free)
k(5,6) P

+ (free)
k(5,7) P

+ (free)
k(5,8) P

+ (free)
k(5,9) P

+ (free)
k(5,16)

P
+ (free)
k(6,1) P

+ (free)
k(6,2) P

+ (free)
k(6,3) P

+ (free)
k(6,4) P

+ (free)
k(6,5) P

+ (free)
k(6,6) P

+ (free)
k(6,7) P

+ (free)
k(6,8) P

+ (free)
k(6,9) P

+ (free)
k(6,16)

P
+ (free)
k(7,1) P

+ (free)
k(7,2) P

+ (free)
k(7,3) P

+ (free)
k(7,4) P

+ (free)
k(7,5) P

+ (free)
k(7,6) P

+ (free)
k(7,7) P

+ (free)
k(7,8) P

+ (free)
k(7,9) P

+ (free)
k(7,16)

P
+ (free)
k(8,1) P

+ (free)
k(8,2) P

+ (free)
k(8,3) P

+ (free)
k(8,4) P

+ (free)
k(8,5) P

+ (free)
k(8,6) P

+ (free)
k(8,7) P

+ (free)
k(8,8) P

+ (free)
k(8,9) P

+ (free)
k(8,16)

P
+ (free)
k(9,1) P

+ (free)
k(9,2) P

+ (free)
k(9,3) P

+ (free)
k(9,4) P

+ (free)
k(9,5) P

+ (free)
k(9,6) P

+ (free)
k(9,7) P

+ (free)
k(9,8) P

+ (free)
k(9,9) P

+ (free)
k(9,16)

P
+ (free)
k(16,1) P

+ (free)
k(16,2) P

+ (free)
k(16,3) P

+ (free)
k(16,4) P

+ (free)
k(16,5) P

+ (free)
k(16,6) P

+ (free)
k(16,7) P

+ (free)
k(16,8) P

+ (free)
k(16,9) P

+ (free)
k(16,16)


(98)

Therefore, the KF δp covariance will be set to zero. The concept of computing

the δv̂ from the δp̂ is explained in Figure 21. Examining Figure 21, the measurement

estimation technique used corresponds to the relationship between position, velocity,

the geolocation error of the arbitrary ground feature, and the growth of the velocity
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error throughout the measurement epoch. The estimate of the error in position

(δv̂ · ∆t) growth throughout the measurement epoch can be used to calculate an

estimate of the total error in velocity δv̂.

Figure 21. Calculated δvx Measurement Concept

Inclusion of the navigation state KF originated due to the measurements the

navigator was able to take. The benefit of using driftmeter like measurements over

time can provide an estimate of the total velocity error rather than just the error in

velocity that has increased during tracking of the ground feature.
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IV. Results

Research simulation results are presented in the following order: replication of the

navigator’s use of the driftmeter, replication of the navigator’s use of the dirftmeter

if correlation would be available, contemporary driftmeter measurement model with

the ground feature known and unknown, and a nav. state KF calculating δvx from

δpx.

4.1 Navigator Replication

In order to validate the approach, a replication of the Navigatior’s performance

with the driftmeter was constructed. The scripted navigation scenario developed

in Section 3.2 was implemented: wings level, constant airspeed, altitude and head-

ing hold. A barometer for altitude measurements, E/O system measurements, and

knowledge of time make up the information the Navigator used to calculate a velocity

estimate. Use of the barometer constrains the INS altitude error, enabling bearings

only measurements of the ground feature to be taken in the x and y directions. Keep

in mind that no information about the range of the ground feature can be extracted

from the bearings-only measurements. Referencing Equation (63), the states for the

system are the navigation state error vector augmented with the biases in the ac-

celerometers, gyroscopes, and the barometric altitude sensor bias. The replication of

driftmeter performance measurement model can be seen in Equation (99), where the

velocity in the x direction, altitude, and baro bias are observable.

Hk =

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 −1

 (99)

Figure 22 shows the results of the simulation with tracking of a ground feature at
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half time (30 min) into the flight duration. At the end of the measurement epoch, the

INS is reset by way of subtracting the Kalman filter navigation state error estimates

from the free running INS navigation state measurements. The Kalman filter is

initialized with the free INS navigation state error covariance values, ignoring cross-

correlation terms which are set to zero. Knowing the ground feature is stationary,

tracking it throughout the duration of the measurement epoch, the filter is able to

estimate the velocity error from the system output through observability. However,

errors in position are unobservable. Conceptually, accumulated position error prior

to measurement availability and estimation update cannot be corrected purely with

a relative update.
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Figure 22. X Pos, Vel, Accel Bias Error - Full Channel Navigator Replication (KF
initialized with NO cross-correlation)

When analyzing the observability of the system, rank deficiency indicates the

navigation state error is not fully observable [11]. In a case where the INS error

dynamics are known, initializing the Kalman filter at half time with the free running

INS navigation state estimation error covariance can provide observability through
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correlation. Specifically, P+
0 of the Kalman filter is set to Pk from the free INS. Below,

Figure 23 shows the results using observability through correlation.
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Figure 23. X Pos, Vel, Accel Bias Error - Full Channel Navigator Replication (KF
initialized with cross-correlation)

As opposed to the Kalman filter initialized with zero cross-correlation, the re-

sults using correct cross-correlation yield improvements in estimation observability.

Specifically, x position and x accelerometer bias error estimates are significantly im-

proved compared to the data driven estimates obtained without observability through

correlation. With a good estimate of the residual accelerometer bias courtesy of cor-

relation, the remaining error propagation model of the INS error will be significantly

improved as the accelerometer bias strongly affects the velocity and position error.

Thus, knowledge of the INS navigation state error dynamics allows the incorpora-

tion of state cross-covariance based on the INS error equation propagation. Initializing

the Kalman filter with the full free INS covariance, yields a x position estimate coin-

ciding with the velocity measurement available to the Kalman filter. At the conclusion

of the 1 hour flight, a 60% reduction in error covariance is realized while eliminating

78



a large portion of the free INS error.

Verified as a proof of concept in simulation, tasking the pilot to track a stationary

ground feature can provide significant position error improvements (60%) without

knowing the position of the ground feature. However, it is important to note, ob-

servability through correlation is possible because the flight condition prior to the

measurement epoch is known and in this case it is the same flight condition during

the measurement epoch.

Implementing the measurement model developed in Section 3.3 demonstrates a

higher fidelity simulation of the aiding action available with bearings-only measure-

ments. Consider the automation of the World War II navigator’s function using

contemporary technology to significantly reduce the human and instrumentation er-

rors.

4.2 INS Error Model Robustness to Axis Acceleration

The robustness of the INS error model was inspected in order to validate the

simplified flight conditions pursued in Section 4.3. Referring to Section 3.3, the

INS error model was tested with acceleration inputs in the ax axis prior to and

following and INS aiding session. During the INS aiding session only, wings level

flight conditions annotated in Section 3.2 are used.

Table 4 shows the difference in position error if acceleration inputs prior to flight

exist vs a steady-state flight condition. Taking the difference between the resultant

position error in the x direction at the end of the 1 hour flight was used as a robustness

test of the INS error model. Equation (100) shows the difference in the position error

in the x direction comparing the INS error model with steady-state dynamics and

with an input sinusoidal acceleration input.
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∆x = xacceleration − xsteady−state (100)

The values are non-dimensionalized when compared and therefore, the equivalent

units are meters. As the frequency of the sine wave increases, the acceleration inputs

appear to cancel out over the course of the flight which is a limitation of this analysis.

Hence, the empirical testing of a reasonable frequency to simulate an acceleration

flight profile. Even with increased magnitude, up to 1g of acceleration force, the

largest difference in final position error does not exceed 20 m.

Table 4. INS Position Error Difference ∆x Results

ω( rad
s

)

a
g

0.005 0.05 0.5 1

0.2 4 0.04 −0.002 0.004

0.4 7 0.07 −0.006 0.006

0.6 11 0.12 −0.009 0.008

0.8 15 0.14 −0.013 0.012

1.0 19 0.18 −0.016 0.015

4.3 Contemporary Driftmeter

Consider the same flight condition outlined in Section 3.2. Simulations were ini-

tially run for a case where the position of the ground feature is known at the be-

ginning of the aiding session to validate the measurement model. Then geolocation

of the ground feature was calculated using the INS and E/O system measurements

which are corrupted with δx from the INS and δxf and δyf from the E/O system.

With the position of the ground feature known, the filter is able to estimate the

INS velocity error by taking measurements over time to a stationary ground feature.
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In the measurements taken throughout the duration of the epoch, the ground feature

is geolocated with geometry using the INS output and the E/O system. Using the

known location of the ground feature is similar to the practices of IP inertial system

updates in terms of an absolute update. Testing with a known ground feature location

given to the KF at time k = 0 served as a basis for validating the measurement model.

Figure 24. X Velocity Error - Ground Feature Location Known

Figure 25 shows the geolocation track calculated using the INS and the E/O sys-

tem. A strong relationship between the altitude error δz and the ability to correctly

geolocate the stationary ground feature was observed. Geolocation of the ground

feature was done eliminating altitude error, eliminating angular error, and with only

the E/O system error for comparison. Also, the ground feature geolocation through-

out the epoch is distributed around the initial geolocation due to the accumulation

of errors at the beginning of the epoch. The drift of the ground feature location

throughout the epoch is attributed to the increase in δx, δψ, and the E/O system

pixel errors observed during the INS aiding session.
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Figure 25. Ground Feature Geolocation Track - Ground Feature Location Known

Geolocation of an unknown ground feature at the beginning of the measurement

epoch proves to only provide an estimate of the accumulation of the error during the

INS aiding session. This is due to the presence of relatively the same errors used to

geolocate the ground feature at l = 0 and throughout the epoch at l = 1, 2, ..., L.

Figure 26 shows the weak estimation, with a zoomed in view in Figure 27, of the

total δvx since the beginning of the flight.
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Figure 26. X Velocity Error - Ground Feature Location Unknown

Figure 27. X Velocity Error - Ground Feature Location Unknown - Zoomed In

With a weak estimate in velocity error, δv, the estimation of the accelerometer

bias is proportionally weak. A good estimate of the accelerometer bias would have

been used to decrease the accumulation of INS error after the INS aiding session in

Figure 28.
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Figure 28. X Accelerometer Bias Error - Ground Feature Location Unknown - Zoomed
In

The ground track of the geolocated ground feature still follows the relationship

dependency on δz. Which validates the use of the barometric sensor for altitude

aiding to constrain the errors in the z channel.
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Figure 29. Ground Feature Geolocation Track - Ground Feature Location Unknown
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4.4 Navigation State Kalman Filter

The navigation state KF attempts to investigate the possibility the system is over

modeled for the measurements available. From an observability perspective, reduction

of augmented correlated states will enhance the observability of the system. Presented

in this section are the results of the implementation of a navigation state KF.

The results show that an estimate in velocity does more than just estimate the

growth of velocity error during the measurement epoch, shown in Figure 30. There-

fore, using the estimate in velocity error, the INS is reset which in turn positively

impacts the growth of error in position, shown in Figure 31.
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Figure 30. Reduced State KF with calculated δvx - X Velocity Error
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Figure 31. Reduced State KF with calculated δvx - X Position Error
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V. Conclusion

The research performed, investigating a bearings-only INS aiding method with an

E/O system has continued the push for inertial navigation research. Reliance on GPS

systems is becoming an obvious concern in many applications including the military.

Research focusing on passive, self contained navigation sensors is paramount. Navi-

gators in World War two were not afforded the technology available today, but were

still able to navigate via dead reckoning with a driftmeter. Therefore, the investiga-

tion into what the driftmeter actually brought to the table is warranted. Realizing

the human and component errors corrupting the navigator’s use of the driftmeter,

the question this research focused on is can we use driftmeter principles with con-

temporary technology to aid a navigation grade INS. Simulations were developed

to replicate the navigator’s use of the driftmeter during the course of a 1hr flight.

The results were evaluated indicating the navigator was able to calculate his error

in velocity well. Understanding the relationship between position and velocity pre-

sented a segue to the geolocation of an arbitrary ground feature at the beginning of

a measurement epoch and subsequently geolocating the ground feature throughout

the epoch. The growth of the error throughout the epoch can be used to back out an

estimate of the INS error in velocity, δv.

5.1 Conclusions - Contributions

Simulation results presented in Chapter IV are not of the precision navigation

performance of a consumer grade GPS standard positioning source [7]. But the value

added comes in the form of the ability to generate an estimate of the total error in

velocity positively impacts the remaining growth of the INS errors. The ability to

implement this technique with current operational technology with little integration
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makes the approach advantageous for flight testing.

5.2 Recommendations for Future Work

A robust analysis on the impact of trajectory on the INS errors to validate the

simplified error equation model used to propagate the free INS would be benefi-

cial from a verification standpoint. Even though the purpose of error models are

to eliminate the dependency on high frequency component dynamics, the modeling

error associated with dynamic flight conditions while running steady-state INS error

equations should be tested.

It was discovered the high dependency the z channel had on the geolocation of

the ground feature due to geometry. Understanding the GDOP constraints in the

flight scenario and the operating limitations of this approach would be valuable. The

GDOP is driven by the error in altitude, aircraft velocity, and time. Evaluating the

performance of E/O systems and determining a cutline for the E/O system mea-

surement uncertainty needed to constructively aid a navigation grade inertial system.

Testing the limits of the E/O system was not in the scope of this initial contemporary

driftmeter replication.

Increasing the fidelity of a simulation model is always an avenue for future work.

The current implementation of INS error sources is strictly the accelerometer bias

and the gyroscope bias. Including the drift and scale factor errors would increase the

fidelity of the INS error model but are not a necessity for an understanding of the

how bearings-only measurements over time can aid the INS.
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